CLARAty Decision Layer Overview

Tara Estlin
May 16, 2002

CLARAty Decision Layer Team: TaraEstlin and Caroline Chouinard
CLEaR Team: Forest Fisher, Dan Gaines, Steve Schaffer

CMU Caollaboration: Reid Simmons

Talk Organization

Decision Layer summary and capabilities

DL system architecture (as provided by CLEaR)
Examples of DL domain models

Code status and documentation

Decision Layer Summary and
Capabilities

Decision Layer Summary

Provides intelligent decision-making capabilities
Designed to contain and enable integration of:
— planning/scheduling techniques

— executive techniques
— other high-level autonomy techniques (e.g. data analysis)

Also intended to provide flexible interface to CLARALty
Functional Layer

Current DL instantiation provided by CLEaR Framework

— CLEaR: Closed Loop Execution and Recovery

— Integrates CASPER dynamic planning system (JPL) with TDL
executive (CMU)

Decision Layer Capabilities

e Autonomous rover-command generation to achieve high-
level science and engineering goals
— Given:
* Initial state: Rover at position (X,y) w/ certain resource levels
» Desired state (i.e., list of goals): Achieve science activitiesA, B and C
— Produce:

« Plan (i.e, list of commands) to make desired state true

 E.g., navigateto loc A, raise mast, take image, lower mast, navigate to loc B,
etc.

Decision Layer Capabilities, cont.

« Reasoning about state, resource and temporal constraints

« Use of both declarative and procedural domain information

— Activity X uses“20 Watts of Power” and requires “Camerato be on”

— Activity A must be scheduled before Activity B within alowable range
[10 sec, 30 sec]

— Activity Z breaks down into sub-activities Z1, Z2 & Z3
— If condition P holds then perform activity Q

o Timelines represent plan’s effects over time

RESOURCE

STATE

Time

Decision Layer Capabilities, cont.

e Command execution and monitoring
— Digpatch commands to FL and monitor relevant state and resource
information
e EXxception handling
— Handle exceptions or failures
— E.g., must retry rock grasp dueto initial failure
— E.g., motor overheats so disable arm

* Re-planning in light of changing context or goals

— Modify global plan when conditions change

— E.g., discard science target or traverse due to unexpected low power
reserves

— E.g., add science target due to unexpected opportunity

Current Decision Layer Instantiation

CLEaR System

CLEaR integrates two software components:

— CASPER planning and scheduling system
* Organized around activities
» Reasons about resource, state and temporal constraints
» Conflict detection
» Global knowledge of plan and state/resource timelines
* Provides:
— Initia plan generation
— Dynamic re-planning when state or goals changes
— Declarative constructs for model information (e.g., activity pre-conditions and effects)

— TDL executive
» Organized around tasks and task trees
» Reasons about task expansion based on current state
» Event-driven decision-making

* Provides:
— Task decomposition and synchronization
— Task execution and monitoring
— Exception handling
— Procedura constructs for model information (e.g., conditionals, iterative behavior)

CLEaR task examining how planning and executive capabilities can be
closaly integrated to provide a more robust and responsive system

Plan
Activity

Resource
timelines

File Edit View SchedulePlan Conflicts Real Time System

Example ASPEN Plan

ASPEN

® @

% B

W

35%

AN

- la:

imeline unit [1998-092/1 5:39:59, 1998-092/18:59:59] sun_angle_sv0 is 150
imneline unit: [1998-0921 5:39:59, 1998-092/18:99:99] sun_angle_sv0 i5150

atus|Timeline unit: [1998-092/06:19:59, 1958-092/08:39:549] sun_angle_sv0 is 30

imeline unit: [1998-092/08:00:20, 1998-092/16:00:00] orbiterd is 0

imeline unit: [1998-092/08:00:20, 1998-092/1 6:00:00] orbiterd is 0

1998-092 1998-092 1998-0192

foErs 0B:00:00 12:00:00) 18:00:00
S 1998-00%1 2:32:04
Score T
Activities

~~ State

day_night_swl 0 _— = 0
rigki day
otbitesd | _______ O el ______
arbiter_view swi || ' : 1
i I out Iout
rower_battend &
[
rower_drive_motars0 e -

e _orientation_sul

rower_solar_arra

rower_spectrometed

E2 4]

s51_storagel

_— e
sun_angle_sul | | | 1 | | |
) [50 [0

(KN

|_—timelines

10

Sample TDL Task Tree

Legend

Task

Monitor

Task generating
FL command

Send turn
command

Monitor est.
temporal failure

Send nav/goto Monitor step
command completion

Monitor turn
in place

~

If “ steptoloc” fails

Abort
goto

Abort
monitor

v
Exec/FL Interface

11

CLEaR High-level View

Goals
/
CLEaR Va

Path queries,
path lengths

< Path queries;

waypoints

ASPEN/CASPER
Planner

Activity status; Activities
. state/resource updates
Resource queries;

estimations

TDL Executive

Command status;
state/resource updat&# Commands

\ 4 \4

Functional Layer / Simulator

12

ASPEN/CASPER System Architecture

Gods &
Init State
Network Activity, timeling, & conflict info «
Constraint ’ l’ Interface/
Propagation > GUI
Activity info
k Conflict status co?ner?g: ds

T ADB modifications

AcCtIVI ty (eg., add, erify, wee| OEArCh < \

Database > | eoair | Optimize —
Rover . Path queries,
Model AN path lengths
A >
Timeline__| Activities |
updates Activity '
permission ! .
ASPEN Updates i Real-time Legend
CASPER &/Stern System Module
: : < Domain-specific
TI mel Ine information
M an&er Act, state A _ Activities to . Socket connection
& resource ct sta?tus, execute Can be socket
updates updates connection or
embedded
. Pathplanning
. (outside module)
TDL Executive T

TDL System Architecture

ASPEN / CASPER Planner

Planner/Exec
|nterface

Plan
activities

Register
tasks

Task/Agenda

Manager

Activity/TL
updates
State/resource
updates
l >
Global state
Task Database Tas/state
updates
Update Agenda
> Global TT/agenda
Manager State info
Real-time
Task Tree Library Task Trees
Command status;
state updates Task mgmt
& state

Path queries;
waypoints

ExecutivelFL | T
I n'[el’f ace Commands

Command status; c q
state updates ommanas
S

Functional Layer / Simulator

14

Decision Layer Examples
and
Model Information

15

Plan
Activity

Resource
timelines

File Edit View SchedulePlan Conflicts Real Time System

Example ASPEN Plan

ASPEN

® @

% B

W

35%

AN

- la:

imeline unit [1998-092/1 5:39:59, 1998-092/18:59:59] sun_angle_sv0 is 150
imneline unit: [1998-0921 5:39:59, 1998-092/18:99:99] sun_angle_sv0 i5150

atus|Timeline unit: [1998-092/06:19:59, 1958-092/08:39:549] sun_angle_sv0 is 30

imeline unit: [1998-092/08:00:20, 1998-092/16:00:00] orbiterd is 0

imeline unit: [1998-092/08:00:20, 1998-092/1 6:00:00] orbiterd is 0

1998-092 1998-092 1998-0192

foErs 0B:00:00 12:00:00) 18:00:00
S 1998-00%1 2:32:04
Score T
Activities

~~ State

day_night_swl 0 _— = 0
rigki day
otbitesd | _______ O el ______
arbiter_view swi || ' : 1
i I out Iout
rower_battend &
[
rower_drive_motars0 e -

e _orientation_sul

rower_solar_arra

rower_spectrometed

E2 4]

s51_storagel

_— e
sun_angle_sul | | | 1 | | |
) [50 [0

(KN

|_—timelines

16

ASPEN Model Organization

Model Files

— Activities. md

— State-variables.md|

— Resources.mdl

Init Files

— Init-state.ini

— Requests.ini (goals)
Functions/code

— Functions.cc (parameter functions)

— Heuristic-functions.cc
— User-search-functions.cc

17

Sample ASPEN Activity Definition

Activity go_to location {
position fromx, fromy, fromz, x, vy, z;
angle fromheading, heading;
distance dist; // est. traverse distance
real speed = 1.655; // meters per min
real goto_power = 330.0; // Watts
int goto_energy; // Watt-hours

timeline_dependencies=

<fromx, fromy, fromz, fromheading> <- rover_orientation_sv,
dependencies =

dist <- path_distance(fromx, fromy, x, y, pathplanner),

duration <- traverse_time(dist, speed, duration, ...),

goto_energy <- calculate rover_energy(goto power, duration);
reservations =

day _night_sv must_be "day",

rover_energy_Sv use goto_energy,

health sv must_be "nominal",

rover_orientation_sv change to <x,y,z,heading> at_end;

18

Sample ASPEN Resource & State Defs

Resour ce shovel { type = atomic; };

Resour ce spectrometer { type = atomic;

1

Resour ce battery {
type = depletable;
capacity = 69; // watts
min_value=0;

1

State variablerover _orientation_sv {
Il'X,y, z, heading
states = <redl, real, real, real>;
default_state = <0.0, 0.0, 0.0, 0.0>;

}

State variable mast_sv {
states = ("stowed", "deployed");
default_state = "stowed";

Y

19

Sample TDL Task Tree

Legend

Task

Monitor

Task generating
FL command

Send turn
command

Monitor est.
temporal failure

Send nav/goto Monitor step
command completion

Monitor turn
in place

~

If “ steptoloc” fails

Abort
goto

Abort
monitor

v
Exec/FL Interface

20

TDL Model Organization

 Mode information contained primarily in *.tdl files

e Proceduresin filessimilar to C++ functions
— TDL based on top of C++ programming language

— TDL modeling language provides extra constructs for task
management (e.g., synchronization, monitoring, etc.)

21

Sample TDL Task Definition

GOAL stepToL ocation(TaskData *taskData, double destPosToal, int time_bound)

{
float targetX, targetY, targetZ, targetHeading, priority;

if(tdlVars[TIME].getCurrentVaue() < time_bound) & &
(tdiVars] TASK_TEMPORAL_FAILURE].getCurrentVaue()))
{
Spawn tur nl nPlace(taskDatatime_bound) With Wait;
if('commandMap|[(int)(tdlVars] CUR_TRAVERSE TID].getCurrentVaue())].isSucceeded())

{
cout<<"stepToL ocation::turninPlace returned without completion. NOT proceeding with goto\n"<<flush;

}...

}
if((tdlVars[TIME].getCurrentVaug() < time_bound) & &

("tdiVars| TASK_TEMPORAL _FAILURE].getCurrentVaue()))

{

tid = sendNavT oCommand(targetX, targetY, targetZ, targetHeading, destPosTol, position_update frequency);

Spawn stepCompletion(taskData, tid, time_bound) With Wait;

If('commandMap|[tid].isComplete())
{

Spawn abortCurrentGoT o(taskData) With Wait; //send an al-stop
commandMap[tid].complete(FAILED);
return;

}
22

Sample TDL Monitor Definition

MONITOR stepCompletion(TaskData *taskData, int tid, int time_bound)
serial, period 0:0:2.0, maximum trigger 1
{
if(commandM ap[tid].isCompl ete())
{
cout<<"stepCompletion: TRIGGER (task compl)\n"<<flush;
TRIGGER();

}
if(tdlVars[TASK_TEMPORAL_FAILURE].getCurrentVaug))

{
cout<<"stepCompletion: TRIGGER (temporal faillure)\n"<<flush;
TRIGGER();

}
if(tdlVars[TIME].getCurrentVaug) >= time_bound)

{
cout<<"stepCompletion: TRIGGER (time bound = ...\n" <<, flush;

TRIGGER();
}

Decision Layer Code Status and
Documentation

24

Status of Code

System requirements

Currently developed using Sparcworks compiler, Solaris 2.6 & 2.8
Have created working binary for Solaris 2.7 (telerobotics sparcs)
Currently porting code to g++ under Linux (TDL aready in Linux)

CLARAty Repository

Have not checked in yet
Holding on paperwork and porting code

Moddl information

Have ASPEN and TDL models based on FY 01 scenario
» Work for both R7 & R8 with small parameter changes
» Currently maintain two separate models for ASPEN & TDL
Model (s) primarily reason about traverses, comm and science activities, and power
and memory resources
DL designed to receives updates from FL for:
» Position, memory & energy
e Currently extending to receive map updates

Model(s) will need to be extended for additional scenarios and/or as new rover
components are added or tested (e.g., arm, mast, comm)

» System source code may require extensions as well (e.g., optimization)

25

Documentation

Some documentation exists on CLARAty DL web page
— http://claraty/Devel opment/DL %20D ocumentation/index.html

— Wil be extending this to have step-by-step instructions for running FY 01
(and future) scenarios in simulation and on rovers

ASPEN/CASPER documentation
— http://www-aig.] pl.nasa.gov/public/planning/aspen/
— http://www-aig.] pl.nasa.gov/public/planning/casper/
— ASPEN User’s Manual can be found at:
 http://www-aig.jpl.nasa.gov/public/planning/aspen/usersguide. pdf
TDL documentation
— http://www-2.cs.cmu.edu/~tdl/

— TDL Quick Reference Manual can be found at:
 http://www-2.cs.cmu.edu/~tdl/tdl.html

26

